首页> 外文OA文献 >Quantum phase gate Based on Electromagnetically Induced Transparency in Optical Cavities
【2h】

Quantum phase gate Based on Electromagnetically Induced Transparency in Optical Cavities

机译:基于电磁感应透明度的量子相位门   光学腔

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

We theoretically investigate the implementation of a quantum phase gate in asystem constituted by a single atom inside an optical cavity, based on theelectromagnetically induced transparency effect. Firstly we show that a probepulse can experience a $\pi$ phase shift due to the presence or absence of aclassical control field. Considering the interplay of the cavity-EIT effect andthe quantum memory process, we demonstrated a controlled phase gate between twosingle photons. To this end, firstly one needs to store a (control) photon inthe ground atomic states. In the following, a second (target) photon mustimpinge on the atom-cavity system. Depending on the atomic state, this secondphoton will be either transmitted or reflected, acquiring different phaseshifts. This protocol can then be easily extended to multiphoton systems, i.e.,keeping the control photon stored, it may induce phase shifts in several singlephotons, thus enabling the generation of multipartite entangled states. Weexplore the relevant parameter space in the atom-cavity system that allows theimplementation of quantum phase gates using the recent technologies. Inparticular we have found a lower bound for the cooperativity of the atom-cavitysystem which enables the implementation of phase shift on single photons. Theinduced shift on the phase of a photonic qubit and the controlled phase gatebetween single photons, combined with optical devices, enable to performuniversal quantum computation.
机译:我们基于电磁感应的透明效应,从理论上研究了由光腔内部的单个原子构成的系统中的量子相门的实现。首先,我们表明,由于存在或不存在经典控制场,探测脉冲可能会经历$ \ pi $相移。考虑到腔EIT效应和量子存储过程之间的相互作用,我们证明了两个单光子之间的受控相门。为此,首先需要在基态原子中存储(控制)光子。在下文中,第二个(目标)光子必须撞击在原子腔系统上。根据原子状态,该第二光子将被透射或反射,从而获得不同的相移。然后可以容易地将该协议扩展到多光子系统,即,保持控制光子存储,它可以在几个单光子中引起相移,从而能够生成多粒子纠缠态。我们探索了原子腔系统中的相关参数空间,该参数空间允许使用最新技术来实现量子相门。特别是,我们发现了原子腔系统协作性的下限,该下界使得可以在单个光子上实现相移。光子量子位的相位上的感应移位以及单个光子之间的受控相门控制,结合光学器件,可以执行通用量子计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号